Ultrafilters maximal for finite embeddability
نویسنده
چکیده
In this paper we study a notion of preorder that arises in combinatorial number theory, namely the finite embeddability between sets of natural numbers, and its generalization to ultrafilters, which is related to the algebraical and topological structure of the Stone-Čech compactification of the discrete space of natural numbers. In particular, we prove that there exist ultrafilters maximal for finite embeddability, and we show that the set of such ultrafilters is the closure of the minimal bilateral ideal in the semigroup (βN,⊕), namely K(βN,⊕). By combining this characterization with some known combinatorial properties of certain families of sets we easily derive some combinatorial properties of ultrafilters in K(βN,⊕). We also give an alternative proof of our main result based on nonstandard models of arithmetic. 2010 Mathematics Subject Classification 05A17, 11P81 (primary); 11B75, 11U10, 54D80 (secondary)
منابع مشابه
Well-partial-orderings and the big Veblen number
In this article we characterize a countable ordinal known as the big Veblen number in terms of natural well-partially ordered tree-like structures. To this end, we consider generalized trees where the immediate subtrees are grouped in pairs with address-like objects. Motivated by natural ordering properties, extracted from the standard notations for the big Veblen number, we investigate differe...
متن کاملOn Fraïssé's conjecture for linear orders of finite Hausdorff rank
We prove that the maximal order type of the wqo of linear orders of finite Hausdorff rank under embeddability is φ2(0), the first fixed point of the ε-function. We then show that Fräıssé’s conjecture restricted to linear orders of finite Hausdorff rank is provable in ACA0 + “φ2(0) is well-ordered” and, over RCA0, implies ACA ′ 0 + “φ2(0) is well-ordered”.
متن کاملIsabelle/HOL-NSA — Non-Standard Analysis
2 Filter: Filters and Ultrafilters 13 2.1 Definitions and basic properties . . . . . . . . . . . . . . . . . 13 2.1.1 Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.2 Ultrafilters . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.3 Free Ultrafilters . . . . . . . . . . . . . . . . . . . . . . 14 2.2 Collect properties . . . . . . . . . . . . . . . . . . . . . . . . . ...
متن کاملUltraproducts of Finite Groups
There are two major types of ultrafilters, principal ultrafilters and non-principal ultrafilters. A principal ultrafilter is one that is generated by any single element a ∈ S, and has the form 〈a〉 = {A ⊆ S | a ∈ A}. However, these principal ultrafilters are not incredibly interesting, and will be used only as an example in this document. On the other hand, we have non-principal ultrafilters. We...
متن کاملSelective Ultrafilters on FIN
We consider selective ultrafilters on the collection FIN of all finite nonempty subsets of N. If countablesupport side-by-side Sacks forcing is applied, then every selective ultrafilter in the ground model generates a selective ultrafilter in the extension. We also show that selective ultrafilters localizes the Parametrized Milliken Theorem, and that selective ultrafilters are Ramsey.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Logic & Analysis
دوره 6 شماره
صفحات -
تاریخ انتشار 2014